If it's not what You are looking for type in the equation solver your own equation and let us solve it.
0.5x^2+88x+24=0
a = 0.5; b = 88; c = +24;
Δ = b2-4ac
Δ = 882-4·0.5·24
Δ = 7696
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{7696}=\sqrt{16*481}=\sqrt{16}*\sqrt{481}=4\sqrt{481}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(88)-4\sqrt{481}}{2*0.5}=\frac{-88-4\sqrt{481}}{1} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(88)+4\sqrt{481}}{2*0.5}=\frac{-88+4\sqrt{481}}{1} $
| 1=-4+5x | | y=1.00+4.44 | | 5x+3=x+3+3.x | | 14.6/x=9/19 | | F(x)=30+.25x/x | | 5x+3=x+3+3 | | 7/k=49/63 | | 4x-7=1;x=2 | | 15i^2=0 | | 2/x-1=4 | | -4(r+2)=8-4r | | n/10+2=11 | | 71/2=c-4/5 | | 2-9(2x-1)=3 | | $55.00+x=$62.44 | | 3x/5+2/5=2+x | | 44=32+y | | P=219+254d | | 0.5(x+16)=1+0.75(x-4) | | 10=14-p | | C=290+155h | | 2÷9t=6 | | 18=1u+15 | | 3/2p-4=6 | | 2x+3x+6x+4x=360 | | 2x+2=(x+1) | | -1=1/2x=1 | | 5×-3(4x-8)=-11 | | 2(c-4)+8=½(6c+20) | | 15=x÷9 | | 1/2t+3/4t=3/8 | | 60+60x0+1=1 |